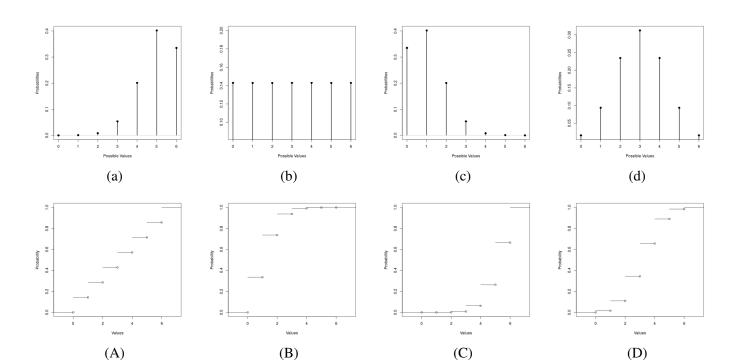
1. (1 point) METUNCC/Statistics/indep.pg


In each of the problems below use the fact that *A* and *B* are **independent** events to compute the missing value.

(i) Given $P(B) = \frac{1}{10}$ and $P(A \cap B) = \frac{2}{25}$ Compute P(A) =_____ (ii) Given $P(A \mid B) = \frac{3}{10}$ and $P(A \cap B) = \frac{1}{20}$ Compute P(B) =_____ (iii) Given $P(A) = \frac{7}{8}$ and $P(A \mid B) = \frac{7}{8}$ and $P(B \mid A) = \frac{9}{10}$ Compute P(B) =_____ (iv) Given #(A) = 32 and #(B) = 16 and #(Total) = 64Compute $\#(A \cap B) =$ _____

2. (1 point) METUNCC/Statistics/pmf_match.pg

Match the following random variables with their pmf and cdf graphed below.

- X is randomly pick a number between 0 and 6 (inclusive): [pmf?/a/b/c/d] [cdf?/A/B/C/D]
- X is roll 6 dice and count number of rolls = 1: [pmf?/a/b/c/d]
- *X* is roll 6 dice and count number of rolls \neq 1:
- [pmf?/a/b/c/d] [cdf?/A/B/C/D] [pmf?/a/b/c/d] [cdf?/A/B/C/D] [pmf?/a/b/c/d] [cdf?/A/B/C/D]
- *X* is flip 6 fair coins and count number of Heads:

3. (1 point) METUNCC/Statistics/E_Var.pg The random variable *X* takes the values [-5, -4, -1] with the pmf given below:

<i>x</i>	-5	-4	-1
$\int f(x)$	$\frac{1}{10}$	$\frac{7}{10}$	$\frac{1}{5}$

Compute the following values. **Expected Values**

 $E[X] = \underline{\qquad}$ $E[X^{2}] = \underline{\qquad}$ Variance
Var[X] = <u>____</u>
(Hint: use your answers from the first section to compute this.)
Linear Transformations $E[3X] = \underline{\qquad}$ $E[X+3] = \underline{\qquad}$ Var[3X] = <u>___</u>
Var[3X] = <u>___</u>
(Hint: use your answers from the previous sections to compute these.)

4. (1 point) METUNCC/Statistics/binom.pg

For the problems below, you may either enter a numeric answer (accurate to 3 significant digits), or the R code which generates the answer.

(Your answer will be checked by R.)

A student attends 76% of his lectures each semester. Compute the following probabilities for a course which consists of 30 lectures during the semester.

The probability that the student attends **exactly** 23 lectures. ______ The probability that the student attends **less than** 18 lectures. ______ The probability that the student attends **more than** 27 lectures. ______ The probability that the student attends **between** 13 and 24 (inclusive) lectures. ______

You may use the embedded R window below to check your code and perform computations.

Embedded R window.

Recall that if $X \sim \text{Binomial}(n, p)$ then the pdf and cdf of X are computed in R by the commands:

f(x) = P(X = x) = dbinom(x, n, p)

 $F(x) = P(X \le x) = pbinom(x, n, p)$

For example

dbinom(4, 10, 1/2) computes the probability that flipping a coin 10 times will result in exactly 4 Heads.
pbinom(7, 10, 1/2) computes the probability that flipping a coin 10 times will result in 7 Heads or less.
1 - pbinom(3, 10, 1/2) computes the probability that flipping a coin 10 times will result in 4 Heads or more.

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America